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ABSTRACT

Traditional photometric redshift methods use only color information about the objects in question to estimate their
redshifts. This paper introduces a new method utilizing colors, luminosity, surface brightness, and radial light profile to
measure the redshifts of galaxies in the SloanDigital Sky Survey (SDSS).We take a statistical approach: distributions of
galaxies from the SDSS large-scale structure (LSS; spectroscopic) sample are constructed at a range of redshifts, and
target galaxies are compared to these distributions. An adaptive mesh is implemented to increase the percentage of the
parameter space populated by the LSS galaxies. We test the method on a subset of galaxies from the LSS sample, yield-
ing rms�z of 0.025 for red galaxies and 0.030 for blue galaxies (all with z < 0:25). Possible future improvements to
this promising technique are described, as is our ongoing work to extend the method to galaxies at higher redshift.

Subject headinggs: catalogs — galaxies: distances and redshifts — techniques: photometric

1. INTRODUCTION

Since Hubble (1929) discovered a linear relationship between
the distances and redshifts of other galaxies, redshiftmeasurements
have been the primary method for determining distances to ex-
tragalactic objects. This is normally done using spectra of suffi-
ciently high resolution that individual spectral lines can be resolved
and matched to the same features in spectra of nearby objects, or
model spectra.

However, measuring the spectrum of an object with high spec-
tral resolution and sufficiently high signal-to-noise ratio requires
a significantly longer integration time than recording broadband
photometry of comparable quality. Thus, it is desirable to be able
tomeasure an object’s redshift from broadband photometry alone.
Redshifts measured this way are called photometric redshifts, or
photo-z’s. Throughout this paper, wewill refer to objects for which
photo-z’s are sought as targets.

Photo-z techniques date back to Baum (1962) who combined
nine photometric bands to form low-resolution spectral energy dis-
tributions for elliptical galaxies. These traced the steep 4000 8
break feature, which remains an excellent tool for photo-z de-
termination since it produces a strong difference in flux between
whichever two passbands straddle it at a given redshift. Koo (1985)
was able to measure fairly accurate photo-z’s for both red and
blue galaxies using only 3 or 4 photometric passbands; hismethod
involved comparisons of observed galaxy colors with those pre-
dicted by theBruzual spectral evolutionmodels (Bruzual 1983 and
companion papers cited therein) at a range of redshifts. Connolly
et al. (1995) took a purely empirical (training-set-based) approach,
deriving a correlation between four-band photometric data and
the measured spectroscopic redshifts of a sample of galaxies.
Sawicki et al. (1997) compare four-band target photometry to
that predicted by empirical template spectra.More recently, hybrid
techniques combining spectral template-fitting with training sets
have been introduced (Budavári et al. 2000; Csabai et al. 2000,
2003).

All of the methods listed above use only the photometric fluxes
(i.e., colors or apparent magnitudes) of their targets for calculat-
ing photo-z’s. However, galaxy images generally yield additional
geometrical information, such as angular size, shape, and light

distribution (radial and azimuthal ). In a review of photometric
redshift techniques, Koo (1999) suggested that galaxy structural
parameters—including surface brightness and radial light profile—
could be used to reduce the number of passbands needed for pre-
cise redshift estimates. Indeed, the bulge-to-total flux ratio was
used by Sarajedini et al. (1999) along with I-magnitude and V � I
color, and Kurtz et al. (2007) have recently developed a novel
method that uses only one color and the surface brightness from a
single band.
Supervised neural networks have recently been used to com-

pute photo-z’s from a range of input parameters, including Pet-
rosian radii (Firth et al. 2003; Vanzella et al. 2004), concentration
index (Collister & Lahav 2004), surface brightness and axial ra-
tios (Ball et al. 2004). D’Abrusco et al. (2007) have incorporated
Petrosian radii and information about the radial profile into their
neural network. Wadadekar (2005) has used a different machine
learning method to compute photo-z’s based on five passband
fluxes alongwith the concentration index,whileWay&Srivastava
(2006) have used ensemble learning and Gaussian process regres-
sion to derive photo-z’s from colors and various morphological
parameters.
This paper introduces a new, statistically-based photo-z tech-

nique, first conceived by D. Schlegel, that uses surface brightness
and the Sérsic index—a measure of the radial light profile—in
addition to five-band photometry. The method is empirical: the
seven properties listed are measured for a spectroscopic sample of
galaxies, whose redshift information is used to estimate photo-z’s
for the target galaxies.
Note that photometric redshifts have also been successfully ap-

plied to quasars (e.g., Richards et al. 2001; Budavári et al. 2001).
This paper focuses on galaxy photo-z’s.
The paper is structured as follows. In x 2 we describe the spec-

troscopic sample of galaxies used by the photo-z code. The photo-z
technique and its development are discussed in x 3, along with
other variations that were explored. A test of the photo-z code is
described in x 4. We present our conclusions in x 5, and suggest
future improvements for increasing the accuracy and applicability
of the method.

2. THE SOURCE SAMPLE

2.1. SDSS and the NYU-VAGC

As of its FourthDataRelease (Adelman-McCarthy et al. 2006),
the Sloan Digital Sky Survey (SDSS; York et al. 2000; Gunn et al.

1 Department of Astronomy, Space Sciences Building, Cornell University,
Ithaca, NY 14853.

2 Princeton University Observatory, Princeton, NJ 08544.

144

The Astrophysical Journal, 678:144–153, 2008 May 1

# 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.



1998. 2006) has imaged roughly 7000 deg2 of sky in five bands (u,
g, r, i, z) ranging from the near-ultraviolet to the near-infrared
(Fukugita et al. 1996; Smith et al. 2002). Follow-up spectroscopy
has been performed on objects selected by one of several precisely
defined target selection algorithms (Strauss et al. 2002; Eisenstein
et al. 2001; Richards et al. 2002). SDSS has measured�106 gal-
axy spectra, but the number of galaxies detected in SDSS imaging
is greater by roughly 2 orders of magnitude. Thus, despite the
great size of the SDSS spectroscopic sample, which includes both
a ‘‘main’’ sample (flux-limited to r ¼ 17:77) and a luminous red
galaxy (LRG) sample (flux- and color-selected, reaching down to
r ¼ 19:5), the huge size of the imaging survey makes it a very
attractive target for photometric redshift techniques. Thuswework
with SDSS data, although the method is in principle applicable to
any other imaging survey with similar observable parameters.

TheNewYorkUniversityValue-AddedGalaxyCatalog (NYU-
VAGC; Blanton et al. 2005) is essentially an ‘‘extended main
sample;’’ it extends the low-magnitude limit down to r ¼ 18, and
makes the other cuts on the main sample less restrictive. It also
includes all galaxies within 200 of any target from the main, LRG,
orQSO samples, and thus is useful for analyzing large-scale struc-
ture. In fact, also available are subsets of the NYU-VAGC called

large-scale structure (LSS) samples, which contain only well-
characterized galaxies with measured spectroscopic redshifts.
These samples are continually updated and expanded; we use
sample 14, which contains 221,617 galaxies with good photom-
etry. Specifically, our sample results from an apparent magnitude
cut, 14:5 < r < 17:5, an absolute magnitude cut,�23: < Mr <
�17:, and a redshift cut, 0:01 < z < 0:25. The redshift cut elim-
inates only a handful of galaxies that are not already eliminated
by the photometric cuts.

Finally, the NYU-VAGC also contains a few derived param-
eters, including K-corrections and Sérsic indices for all galaxies.
The Sérsic index n (Sérsic 1968; Graham & Driver 2005) is de-
fined byfitting the radial surface brightness profilewith amodel of
the form

I(r) ¼ A exp ½�(r=r0)
1=n�: ð1Þ

The value n ¼ 1 produces an exponential light profile, typical of
late-type galaxies (in addition to some low-luminosity early-type
galaxies), whereas n ¼ 4 produces a ‘‘de Vaucouleurs profile,’’
long considered a good description for many early-type galaxies.
The SDSS photometric pipeline only performs fits for these two

Fig. 1.—Properties of sample 14 galaxies, K-corrected and corrected for cosmological surface brightness dimming, to z ¼ 0:05; �i is the i-band surface brightness,
n is the Sérsic index, and i the i-band apparent magnitude. Galaxies are weighted by 1/Vmax (see x 2.2). Note that each two-dimensional plot is duplicated (reflected about
the diagonal). The sharp cutoff that appears in the distribution of i-magnitudes is due to the absolute magnitude cut imposed on sample 14.
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particular values, because computing an arbitrary best-fit value
is computationally very expensive (Stoughton et al. 2002). Thus,
Blanton et al. (2005) calculate this best-fit value of n themselves,
for each galaxy in the NYU-VAGC (although they do the fits to
circularly averaged profiles, whereas the SDSS pipeline performs
a full two-dimensional elliptical fit.)

2.2. Examining the LSS Samples

Blanton et al. (2003a) used the slightly older LSS sample 12,
with cuts very similar to the oneswe used, to examine correlations
among observable properties of SDSS galaxies. The quantities
they studied were the four colors u� g, g� r, r � i, i� z; the
absolute magnitudeMi; the surface brightness �i; and the Sérsic
index n, with all parameters ‘‘corrected’’ to z ¼ 0:1. That is, us-
ing each galaxy’s redshift, its colors were K-corrected to the rest
frame, but to ugriz bandpasses shifted blueward by a factor of
(1þ 0:1) in k. The absolute magnitude and surface brightness are
also for the (z ¼ 0:1)-shifted i-band. Blanton et al. (2003a) pro-
duced arrays (e.g., their Fig. 7) of two-dimensional galaxy dis-
tributions for each pair of the seven properties listed, and discussed
in depth the features of these bivariate distributions. The plots
along the diagonal of their Figure 7 are one-dimensional distri-
butions of each property.

We use sample 14 to generate similar plot arrays at a range of
redshifts (Figs. 1–4), but we choose to use the apparent magni-
tude i, K-corrected and corrected for cosmological surface bright-
ness dimming, instead of a band-shifted Mi. Thus all properties
plotted are photometric observables for the galaxies in question,
shifted to a common redshift. K-corrections are performed using
the IDL code Kcorrect v3_2 (Blanton et al. 2003b). As in Blanton
et al. (2003a), all magnitudes are Petrosian magnitudes (see de-
scriptions in Blanton et al. 2001; Strauss et al. 2002), which mea-
sure a fraction of the galaxy light that is constant with distance
or size (ignoring the effect of seeing); Graham et al. (2005) have
described a simple method for converting Petrosian magnitudes
to total magnitudes.
Note that Figures 1–4, like Blanton et al. (2003a)’s Figure 7,

attempt to show what a true sample of galaxies at the indicated
redshift looks like; this is achieved by weighting each galaxy by
1/Vmax, whereVmax is ‘‘the volume covered by the survey inwhich
this galaxy could have been observed’’ (Blanton et al. 2003a).
This weighting accounts for the window function of the survey
and the redshift distribution of the galaxies in the sample; x 3.4 of
Blanton et al. (2003a) provides further details. As a result of this
weighting, our one-dimensional i-distributions have the form of
Schechter functions, but with a sharp drop at the faint end due to

Fig. 2.—Same as Fig. 1, but for z ¼ 0:1.
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the absolute magnitude cut described above (the drop-off is not
vertical because the cut was performed in the r-band).

Comparing Figures 1–4 reveals the changes in photometric
properties that occur as the same sample of galaxies is observed
at different redshifts. These changes are plotted directly in Fig-
ures 5 and 6. Five randomly selected galaxies that appear faint
and blue (at z ¼ 0:1) and have exponential profiles are plotted
at a range of redshifts (Fig. 5); the same is done separately for
five randomly selected bright (L�), red, de Vaucouleurs galaxies
(Fig. 6). The plots along the diagonal of each figure have red-
shift z increasing along the horizontal axis.

By comparing Figures 5 and 6 with Figure 2, one sees that the
Sérsic index is a very useful parameter for red galaxy photo-z’s,
since it is constant with redshift while all other properties are not,
and red galaxies exhibit a wide range in n. That is, the trajectory
alongwhich a red galaxymoves in redshift (Fig. 6) is roughly per-
pendicular to the galaxy distribution in all the two-dimensional
plots containing n. The i-band apparentmagnitude is also clearly a
useful property when combinedwith any of the other observables:
it changes strongly with redshift, and the red and blue galaxy
trajectories never overlap in the two-dimensional plots. Note that
there are degeneracies in some of the color-color plots (i.e., high-z
blue galaxies look like low-z red galaxies), particularly those in-
corporating r-band data but not u-band data. However, the other

colors and the apparent magnitude clearly are sufficient to break
the degeneracy.

3. THE PHOTO-z CODE

3.1. Theory

We can determine a galaxy’s redshift by combining its apparent
(observable) properties with absolute quantities, i.e., by specify-
ing its type T. Thus, for a given galaxy targeted for photo-zmea-
surement, we want to find the peak of P(T ), the probability
distribution of galaxy types that it could be. This information
will allow us to compute its redshift.

The starting assumption of our photo-z technique is that the
(shifted) empirical galaxy distributions of x 2.2 can be used asprob-
ability distributions. That is, we want to use the seven-dimensional
distribution of the previously named observables (ofwhich Figs. 1–
4 show two-dimensional projections), corrected to a given redshift
z, to approximate P(T jz), the probability distribution of galaxy
types at that redshift. If the redshift corrections are reliable, then
this should be a fairly good approximation given the large sam-
ple size. According to Bayes’ theorem, a photo-z can then be com-
puted as the redshift that maximizes

P(T ) ¼ P(T jz) � P(z); ð2Þ

Fig. 3.—Same as Fig. 1, but for z ¼ 0:3.
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where P(z) is the total probability distribution of redshifts for the
sample of target galaxies. Estimating this function well will be
an important step in applying this photo-z method to any new
target sample.

The seven dimensional distributions are generated across a
range of redshifts that is believed to cover all galaxies in the tar-
get sample, with an interval between the redshifts that is less
than the rms error of the photo-z’s. At each redshift, a target
galaxy falls somewhere in the P(T jz) distribution, and the value
P(T jz) � P(z) is computed and stored for comparison to values at
other redshifts.

Initially, a slightly different approach was considered: only one
distribution would be generated, and each target galaxy would be
assigned many different redshifts in turn. Roughly speaking, the
best-fit photo-z would then be that which places the target at the
highest point in the distribution. However, Figures 1–4 demon-
strate that the distributions change shape with redshift, so infor-
mation would be lost with this approach. Furthermore, for reasons
described by Blanton et al. (2003b) ‘‘one can observe a galaxy at
z ¼ 0:1 and reliably infer what it would look like at z ¼ 0:3; it
is only the reverse process that is difficult.’’ Since the median
redshift of the LSS samples is z � 0:1, we are much better off
doingK-corrections to the sample galaxies than to a target galaxy
that may have redshift z � 0:3. Finally, the multiple-distribution

method is more computationally efficient because we can gen-
erate the requisite distributions just once and store them, so that
no K-corrections need be performed when we run the code on a
set of targets. For all of these reasons, the method of generating
multiple distributions is favored.

3.2. Implementation

We use IDL to implement the algorithm described above. Dis-
tance moduli (for shifting the source galaxies) are computed us-
ing the cosmological parameters�m ¼ 0:3,�� ¼ 0:7, andH0 ¼
100 km s�1 Mpc�1 (following Blanton et al. 2003a). To avoid
assigning as photo-z’s only those discrete redshifts at which the
distributions are generated, we interpolate quadratically between
the maximizing redshift and its immediate neighbors at higher
and lower z. We assign the z-value corresponding to the peak of
the fit parabola. For galaxies assigned theminimum ormaximum
redshift tested, we simply use that value; however, the redshift
range can always be expanded so that there are few of these cases.
The shifted galaxies are placed into cells in a seven-dimensional

array, each dimension of which spans a range broad enough to
include virtually every galaxy in the source sample, at every red-
shift to be tested. Given this broad range, we must have a large
number of cells in each dimension in order to have reasonably
high type-resolution. However, the resolution is limited by both

Fig. 4.—Same as Fig. 1, but for z ¼ 0:5.
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the amount of memory available on the system on which the code
is run (this is a real problem for seven-dimensional arrays of num-
bers that can become fairly large near a peak in the distribution),
and the fact that the number of points (source galaxies) that go in
the array is fixed, so that increasing resolution makes the array
more and more sparsely populated.

We balance these competing factors by using a resolution of
15 cells per dimension. However, for a typical distribution gen-
erated at this resolution (in particular, for z ¼ 0:01), only�0.03%
of the cells in the array are populated, and the majority of these
contain just one galaxy. Therefore an adaptivemesh is implemented,
‘‘smoothing’’ each single-galaxy cell across all neighboring cells.
Specifically, the occupation number of each cell is multiplied by
a (large) constant N, and then all cells that lie within one unit (in
any combination of dimensions) of a single-galaxy cell are pop-
ulated with numbers, the total of which—for any given single-
galaxy cell—is N. Thus, after the initial multiplication by N, no
points are added to the distribution; it is merely smoothed around
each cell that formerly contained a single galaxy.

Furthermore, not all the cells newly populated by this step are
given the same value, for they lie at different distances in param-
eter space from the central cell (the one that had only one galaxy).
For example, a cell that has six coordinates in common with the

central cell and only one that differs by unity is much ‘‘closer’’
than a cell with all seven coordinates differing by unity from those
of the central cell. Thus we compute the center-to-center distance
between each cell and the central one (in units of a cell), and place
values in the cells that are inversely proportional to that distance.
The central cell gets the largest value of all, although this is greatly
reduced from the value it had before smoothing.

After this smoothing is performed, the z ¼ 0:01 distribution
mentioned previously populates �3% of the array, an improve-
ment by 2 orders of magnitude. In the next section, we will see
how this change affects photo-z measurements.

4. RESULTS

Photometric redshift routines are usually tested by applying
them to objects with known (i.e., spectroscopic) redshifts. Since
redshifts are known for all galaxies in LSS sample 14, we can
simply trim the sample that we use to generate the distributions
and use the remaining galaxies as the target sample. Specifically,
we test the code on 1

4
of the sample (55,405 galaxies), using only

the remaining 3
4
to generate the distributions. Distributions are

generated over the redshift range 0:02 < z < 0:30, at intervals of
0.02 in z (note that the upper limit extends beyond the greatest
redshift present in our source sample; still, we include z ¼ 0:30

Fig. 5.—Seven photometric properties offive randomly selected faint, blue, exponential galaxies in the LSS sample 14, plotted at a range of redshifts (specifically, at
z ¼ 0:05, 0.075, 0.1, 0.2, 0.3, 0.4, and 0.5). The galaxies were selected from a compact seven-dimensional ‘‘box’’ at z ¼ 0:1.
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in order to verify that no galaxies are incorrectly assigned such a
high redshift).

As explained in x 3.2, an estimate of P(z) for the target sample
is needed. In this special case, P(z) is the same for both the source
and target distributions. P(z) is usually ‘‘divided out’’ from the
source population when each galaxy is weighted by 1/Vmax.
Instead, in this case we can avoid estimating P(z) entirely by giv-
ing each source galaxy a weight equal to unity, effectively skip-
ping the division by P(z). Then there is no need to multiply by
P(z) later, for the probability computed from the distribution at
each given redshift z gives us P(T ) directly. Figure 7 shows the
two-dimensional projections of a unity-weighted distribution,
as used in this particular test.

We define�z � z� zphot, where z is the spectroscopic redshift
and zphot is our photo-z. Without the adaptive mesh smoothing,
this test yields an rms �z of 0.029, with systematic offset of es-
sentially zero (mean�z � �0:0005). However, our failure rate,
i.e., the percentage of galaxies that are not assigned a redshift be-
cause they do not fall inside an occupied cell at any of the red-
shifts tested, is �29%. With the smoothing incorporated, the
failure rate drops to�11.3%,which should be acceptable for most
purposes; the rms�z also improves slightly, to�0.0275. Figure 8
is a plot of zphot versus z for all the galaxies here tested.

In addition, we examine the performance of the photo-z code
on red and blue galaxies separately, using the ‘‘optimal color
separator’’ of Strateva et al. (2001), u� r ¼ 2:22. The target sam-
ple, thus divided, contains 25,296 ‘‘blue’’ galaxies and 30,109
‘‘red’’ galaxies. The rms�z for the red galaxies is �0.0246; for
the blue galaxies, it is �0.0303. Interestingly, the red galaxies
have a notably higher failure rate (�16.5%) than the blue galaxies
(�5.1%). Figures 9 and 10 are plots of zphot versus z for the red and
blue galaxy subsets, respectively. Table 1 divides the target sam-
ple even further, both by u� r color and by i-magnitude, and
shows the variation of rms�z with these parameters. The errors
are smaller for the brighter galaxies of all colors, despite the fact
that the fainter galaxies are more numerous in both the training
set and target sample.
Table 2 compares our photo-z accuracy to that achieved by

other methods. Our rms�z is lower than that obtained by Csabai
et al. (2003) using two template-fitting methods and their own
hybrid technique, and comparable to the results of Connolly et al.
(1995)’s quadratic-fitting approach and the support vectormachine
method of Wadadekar (2005). The template-fitting methods also
produce significant systematic offsets (underestimates), while
our method does not. Csabai et al. (2003) reported rms �z of
0.029 for red galaxies and 0.04 for blue galaxies, so our method

Fig. 6.—Same as Fig. 5, but for five randomly selected bright (L�), red, de Vaucouleurs galaxies.
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Fig. 7.—Same as Fig. 2, but here each galaxy enters the distribution with weight 1, instead of 1/Vmax.

Fig. 8.—Our photo-z vs. the spectroscopic z for all galaxies in the sample 14
subset used for testing, as described in x 4 (49,158 galaxies); rms�z is�0.0275.

Fig. 9.—Same as Fig. 8, but with only the red galaxies (those with u� r >
2:22) plotted (25,146 galaxies); rms �z is �0.0246.



shows the most pronounced improvement in the photo-z’s for
blue galaxies. Csabai et al. (2003) used a smaller sample of
�35,000 galaxies, but using smaller training sets does not sig-
nificantly increase the errors from our method (R. Mandelbaum
et al., in preparation).

Padmanabhan et al. (2005) have achieved rms�z � 0:03 us-
ing a template-fitting approach, but they used the deeper SDSS
LRG sample, so their results are not directly comparable to ours.

As Table 2 shows, smaller rms�z has been obtained using the
neural network technique of Collister & Lahav (2004) and two
techniques (ensemble model and Gaussian process regression)
introduced by Way & Srivastava (2006). Other neural network
methods have similarly attained rms �z � 0:02 (Vanzella et al.
2004; Ball et al. 2004; D’Abrusco et al. 2007). However, our
method is arguablymore transparent than the neural network tech-
niques. The next section discusses additional improvements that
could further reduce our errors in future implementations.

5. CONCLUSIONS

We have described a newmethod for determining photometric
redshifts of SDSS galaxies. The method is empirical, and uses a
large spectroscopic sample of SDSS galaxies to infer distribu-

tions of galaxy properties at a range of redshifts. The best-fit
redshift is determined by comparing these distributions to a gal-
axy for which a photo-z is desired. The properties used are the
five-band SDSS photometry, along with surface brightness and
the Sérsic index. This represents one of the first alternatives to
neural networks for deriving photo-z’s from imaging information
beyond the photoelectric fluxes.
Our test of the method produces rms �z ¼ 0:025 for red gal-

axies in the Main sample, and rms�z ¼ 0:030 for blue galaxies.
These variances are an improvement over those achieved by
template-fitting and hybrid photo-z codes previously applied to
SDSS galaxies, but are somewhat worse than the errors typical of
neural network methods.
Implementing an adaptive mesh reduces our method’s fail-

ure rate, but has only a small effect on the rms �z, so further
adjustments to the smoothing technique alone would not likely
reduce our errors. Similarly, training sets even larger than the
166,212 galaxies used in our test are unlikely to improve the er-
rors significantly (R. Mandelbaum et al., in preparation). Be-
cause our errors are currently larger than the redshift spacing
(0.02 in z) used in generating the arrays for the test described
here, generating the arrays at finer intervals does not by itself
reduce our errors.
One modification that may help would be to change the cell

spacing for various observables in the array—e.g., for the Sérsic
index, cells could be evenly spaced in log (n) rather than evenly
spaced in n. Alternatively, the spacing could be chosen (for any
or all observables) such that the peaks in the distribution are
spread across many cells, effectively providing higher resolution
in P(T jz). This approach would have the added advantage of pop-
ulating a larger fraction of the array, potentially reducing the fail-
ure rate.
Looking ahead, the next major challenge for photometric red-

shift techniques (including our own) is to make them applicable
to higher redshift galaxy samples. At redshifts only a little higher
than the maximum for our sample, the intrinsic evolution of the
target galaxies becomes significant. This evolution can be calcu-
latedwith some reasonable confidence for the red, passively evolv-
ing galaxies, but not for the actively star-forming blue ones.
In any case, it is clear that to extend the present techniques

to higher redshifts, evolutionary corrections will have to be ap-
plied if one wishes to use the SDSSMain sample to generate the
seven-dimensional probability arrays. Of course, this approach
will require one to estimate the redshift distribution P(z) of the
target sample in order to compute the individual galaxy redshifts.
Alternatively, deeper surveys covering the larger redshifts could
be used to generate a high-z training set, but the necessity to pop-
ulate the arrays and determine evolutionary effects self-consistently

Fig. 10.—Same as Fig. 8, but with only the blue galaxies (those with u� r <
2:22) plotted (24,012 galaxies); rms �z is �0.0303.

TABLE 1

Our Photo-z Errors as a Function of Color and Apparent Magnitude

u� r

i <1.5 1.5–1.75 1.75–2.0 2.0–2.25 2.25–2.5 2.5–2.75 >2.75

<15.5 ......................... 0.0130 0.0156 0.0184 0.0209 0.0181 0.0171 0.0177

15.5-16 ....................... 0.0185 0.0212 0.0224 0.0247 0.0220 0.0200 0.0199

16-16.25 ..................... 0.0226 0.0263 0.0250 0.0272 0.0255 0.0199 0.0216

16.25-16.5 .................. 0.0256 0.0270 0.0311 0.0298 0.0285 0.0229 0.0225

16.5-16.75 .................. 0.0272 0.0317 0.0335 0.0319 0.0274 0.0243 0.0239

16.75-17 ..................... 0.0270 0.0319 0.0341 0.0363 0.0300 0.0251 0.0242

>17 ............................. 0.0317 0.0343 0.0363 0.0380 0.0334 0.0266 0.0265

Note.—Most (color, magnitude) bins contain between 500 and 2000 galaxies; the least populated bin (u� r < 1:5, i < 15:5) contains
189 galaxies.

WRAY & GUNN152 Vol. 678



demands very large data sets. It is likely that moderate-sized deep
surveys can be used to verify empirical evolutionary corrections
to the SDSS main sample for higher-redshift photo-z estimates,
and this is the path now being pursued here (R. Mandelbaum
et al., in preparation). There are several redshift surveys deeper
than the SDSS spectroscopic sample that overlap with SDSS
imaging, including the DEEP2 survey (e.g., Davis et al. 2005)
and the CNOC2 survey (e.g., Lin et al. 1998), which can be
used in this endeavor, allowing us to probe more deeply the spa-
tial distribution of galaxies throughout the second half of cosmic
history.
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TABLE 2

Comparison of Photo-z Errors from Different Techniques

Method rms �z Source

CWW templates..................... 0.067 Csabai et al. (2003)

BC templates.......................... 0.055 Csabai et al. (2003)

Hybrid .................................... 0.035 Csabai et al. (2003)

Our method ............................ 0.0275 This work

SVM....................................... 0.027 Wadadekar (2005)

Quadratic fitting ..................... 0.026 Way & Srivastava (2006)

Gaussian process.................... 0.023 Way & Srivastava (2006)

ANNz ..................................... 0.019 Way & Srivastava (2006)

Ensemble model..................... 0.019 Way & Srivastava (2006)

Notes.—Photo-z errors of our method compared to those produced by other
methods on similar large catalogs of SDSS main sample galaxies. The first two
methods used the spectral templates of Coleman et al. (1980) and Bruzual &
Charlot (1993), respectively. The quadratic fitting method is similar to that intro-
duced by Connolly et al. (1995). The ANNz neural network code is that presented
by Collister & Lahav (2004).
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